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ABSTRACT 

In P r o p o s i t i o n s  1.6 a n d  7.6 of  h i s  p a p e r  on  p - g r o u p  c o m p l e x e s  of  f in i t e  

groups [5], Quillen establishes fundamental results comparing the homol- 
ogy and the fundamental group of the order complexes of posets P, Q 
admitting a map f : P --* Q of posets with good local behavior. We 
prove the analogue of Quillen's results for maps f : It" ---* L of simplicial 
complexes K and L in a more general setup. 

Let K be a finite dimensional simplicial complex with geometric realization IKI. 

(See [3], [6], and the body of the paper  for definitions of s tandard terminology.) 

We say that  K is n - c o n n e c t e d  if IK[ is n-connected as a topological space and 

K is c o n t r a c t i b l e  if [KI is contractible. 

Define a simplicial map ¢ : L ~ D of finite dimensional simplicial complexes to 

be loca l ly  n - c o n n e c t e d  if for all 0 < k < n +  1 and all k-dimensional simplices s 

of D, ~ e s  ¢-l(stD(a))is (n-k) -connec ted .  Here ¢-l(stD(a)) is the subcomplex 

of L consisting of all simplices t with ¢(t) a simplex of StD(a). Term ¢ loca l ly  

c o n t r a c t i b l e  if ¢ is locally n-connected for all n; that  is N,e8  ¢-l(stD(x)) is 

contractible for all simplices s of D. 
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The g r a p h  of D is the (undirected) graph A(D) on the vertices of D in which 

vertices are adjacent if they form a simplex of D. Conversely the clique complex  

of a graph A is the simplicial complex K(A)  with vertex set A and simplices the 

cliques of A. We say D is a clique complex  if D = K(A(D)) .  For example the 

order complex of a poser is a clique complex and more generally D is a clique 

complex if and only if stD(s) = Naes stD(a) for each simplex s of D. (cf. 2.1) 

The following result should be compared to Propositions 1.6 and 7.6 in Quillen 

[5]: 

THEOREM 1: Assume ¢ : L ~ D is a locally n-connected simplicizd map of finite 

dimensional simplicial complexes with D a clique compIex. Then 

(1) I¢1: IL"I ~ ID"l is a homotopy equivalence of n-skeletons. 

(2) I r ~  > 1 then ¢ ,  : - , ( IL l , x )  --, ~ , ( I D l , ¢ ( x ) )  is an isomorphism for each 

vertex x of L. 

(3) L is n-connected i[ and only if D is n-connected. 

(4) I r e  is locally contractible then ]¢[: ILl ---* [D[ is a homotopy equivalence. 

We have stronger results on simple connectivity. Define an n - a p p r o x i m a t i o n  

of a simplicial complex L by a simpticial complex D to be a surjection 8 : A(D) 

~" of A(D) onto some family .$" = ~'(8) of subcomplexes of L such that each k- 

simplex of L is contained in a member of ~', for all 0 < k < n, and 

(n -Approx)  [~aes 8(a) is an (n - k)-connected subcomplex of L for each 0 _< 

k _< n + 1 and each k-simplex 8 of D. 

THEOREM 2: Let ¢ : L ~ D be a locally O-connected simplicial map and x a 

vertex of L. Then the induced map ¢, : 7r~([L[, x) ~ 7rl([D[, ¢(x)) is a surjection, 

so in particular i f  L is simply connected then so is D. 

THEOREM 3: Let L, D be simplicial complexes with graphs A, A, respectively, 

and assume ~ is a 1-approximation of L by D. For x 6 A let ~ (x )  = {a 6 A : 

x 6 8(a)} regarded as a subgraph of A. Assume that whenever a, b 6 A and 

~ ~(~) n e(b) that the~e exists y e e(~) n O(b) such that ~ and b are in t~e same 

connected component of~ (y )  and x and y are in the same connected component 

of e(a) n 8(b). Then if D is simply connected, so is L. 

We also establish a variety of more specialized results. See in particular lemma 

3.3 that supplies a sufficient condition for nonvaaishing of 1-homology and Theo- 

rem 2.5 which is a version of Theorem 1 in the case n = 1 which does not require 

D to be a clique complex. 
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Our results will be applied in later papers to certain simplicial complexes as- 

sociated to finite groups. For example in [1,2] we began a program to establish 

the uniqueness of the sporadic finite simple groups via an analysis of the sim- 

ple connectivity of certain graphs and geometries associated to these groups. In 

addition our results can be used to study the Brown and Quillen complexes of 

finite groups at the prime p from the point of view of the clique complex on the 

commuting graph of subgroups of order p. (cf. [8]) For while Propositions 1.6 

and 7.6 in [5] are well suited for studying the order complex of a poser, Theorem 

1 is better suited to the study of the clique complex of a graph. 

1. Generalities: simple connectivity 

In this section we record some of the basic facts about simplicial complexes we will 

need. Some are standard facts from combinatorial topology and others extend 

the point of view of [1] to simplicial complexes. The reader is referred to [1] for 

our graph theoretic notation and terminology. 

Recall the s t a r  StD(S) of a simplex s of a simplicial complex D is the subcom- 

plex of D whose simplices are the simplices t of D such that s 0 t is a simplex of 

D. 

Define a simplieial map ¢ : L ~ D of simplicial complexes to be a cover ing if 

¢ is surjective on vertices and a local isomorphism; that is for each vertex x of 

L, the map ¢~: StL(Z) --* StD(¢(x)) is an isomorphism. 

Write L n for the n-skeleton of L; notice we can identify L 1 with the graph A(L) 

of L from the introduction. Notice also that if ¢ : L ~ D is a simplicial map then 

the induced map ¢ :  A(L) ~ A(D) is a morphism of graphs, while conversely 

each morphism d : A ---* A of graphs induces a simplicial map d : K(A) ---* K(A)  

of clique complexes. Moreover 

(1.1): I f  ¢ : L -* D is a covering of simplicial complexes then 

(1) ¢ is surjective on simplices, and 

(2) For each simplex s of L, ¢ :  stL(s)  --~ 8tD(¢(S)) is an isomorphism. 

Let P = P(A)  be the set of paths in the graph A of some simplicial complex 

D. Let -,, be a P-invariant equivalence relation on P as defined in section 2 of 

[1]. As in [1], define P / ~  = / 5  to be the set of equivalence classes of ~ and make 

/5 into a graph as in section 4 of [1]. 

Notice t ha t / 5  is a groupoid; ie. a small category in which all morphisms are 
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isomorphisms. Namely A is the collection of objects of this category while the 

morphisms from x to y are the classes i5 with p a path from x to y. We abuse 

terminology and call P a groupoid too, although here each morphism is not an 

isomorphism. But at least we have the contravariant functor p ~-* p-1 (trivial on 

A), which is almost as good. 

P i c k  a vertex x E A. As in section 4 of [1], let E(A, x) denote the set of 

paths with origin x, write ~(A,  x) = E(A, x)/,~ for the set of classes/5 with 

p e r,(a, ~), and , (A ,  ~) for the group of 15 • ~(a, ~) with p a cycle. From 4.1 

in [1] we have a map end:  15 ~ end(p) from Z(A, x) into A. 

Def ine/ )  to be the subcomplex of K(/5) with simplices s such that end(s) -- 

(-J,e~ end(a) is a simplex of D. Let ~](D, x) be the corresponding subcomplex 

of ~(A,  x) and ~(D, x) the corresponding group. Let 7r, (D, x) = ~(D, x), where 

'~ -- ~ s  for S the closure (cf. section 2 in [1]) of the set of all 2-simplices of 

D. Then lr l(D,x) is the f u n d a m e n t a l  g r o u p  of D and is isomorphic to the 

fundamental group of the geometric realization of D: 

Proof: This is a standard result stated in a slightly different language. Namely 

~rl(D, xo) is the edge path group of D.(ef. Chapter 3, Section 6 of [6]) Now 

appeal to Theorem 3.6.16 in [6]. | 

(1.3): Assume D is a simpllcial complex with connected graph A, and ,~ is a P- 

invariant equivalence relation on P. Then end : D -~ D is a covering of simplicial 

complexes i f  and only i/ker(,~) contains all 2-simplices of D. 

Proof." See 4.1 in [1]. The kerne l  ker(,,,) of -- is defined in section 2 of [1]. 
| 

Define a local  s y s t e m  on the graph A to be an assignment F : x ~ F(x) ,  

(x,y) ~ Fxy of each x • A to a set F(x)  and each edge (x,y) to a bijection 

F,y:  F ( , )  -~ V(y), such that 

(LS1) F~x o Fxy = idF(,) for each edge (x, y) of A. 

Example 1: If d : A ~ A is a fibering of graphs in the sense of [1], we obtain a 

local system F a on ~ defined by F~(x) = d-~(x) and F~y(,) = d2(y) ,  where 

d~ =dlA( ,  ). 
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Given a local system F on A, we can proceed as in section 4 of [1]. Namely 

if p = x o . . . x n  e P ( A )  is a path, define Fp: F(org(p)) ~ r(end(p))  recursively 

by F,o = idF(zo) and Fp = F z , _ , , .  o Fq, where q = x0 . .  "xn-1. We say paths p 

and q are F - h o m o t o p i c  if Fp = Fq and write p " f  q- 

(1.4): (1) If  p, q are paths with end(p) = org(q) then Fpq = Fq o Fp. 

(2) Fp o Fp-, = idF(,nd(p)). 

(3) F-homotopy is a P(  A )-invariant equivalence relation. 

(4) F is a functor from the path groupoid of A to Sets, so that Fp is an 

isomorphism for each path p. 

Let D be a simplicial complex with graph A. A local  s y s t e m  on D is a local 

system on A such that: 

(LS2) F,~ = Fyz o F,y for each 2-simplex {x, y, z} of D. 

Example 2: If d : L --* D is a covering of simplicial complexes then d induces a 

fibering d : A ~ A of the graphs of L, D and hence a local system F d on A by 

Example 1. Then F d is a local system on D. 

We can view D as a category whose objects are the simplices of D and mor- 

phisms are inclusions of simplices. 

(1.5): If F is a local system on D then F induces a functor F from D to Sets 

via F(s)  = F ( x , )  for some x,  E s and F,,t = Fp for some path p from xs to xt 

in t .  

Notice the definition in 1.5 is independent of p as t is simply connected. Lem- 

mas 1.4.4 and 1.5 show that a local system on A or D is a local system in the 

sense of section 7 of [5]. 

Given a local system F on A, define AF to be the disjoint union of the sets 

F(z) ,  x E A, and define dF: AF ~ A to be the map with dF l (z )  = F(z )  for 

each x E A. Make A F into a graph by decreeing that u is adjacent to v if there 

is an edge (x ,y )  of A with u C F(x)  and F,s(u) = v. Notice (LS1) says this 

relation is symmetric. 

Similarly if F is a local system of D let DF be the subcomplex of K ( A F )  with 

simplices s such that dR(s) is a simplex of D. 

If F is a graph and v a vertex of F, set v j- = {v} U P(v). 

(1.6): Let F be a local system on D. Then 

(1) dR : DR ~ D is a covering o lD.  
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(2) F = F dF is the local system of dF. 

(3) I f  ¢ : L --* D is a covering then DF,  = L and ¢ = d f , .  

Proof." Let d = dR, x E A,  and u e F(z) .  T h e n u  ± =  { F x y ( u ) : y E z  ±} and 

the map Fz~(u) ~ y is the restriction du of d to u ±. In particular du : u ± --~ x ± 

is a bijection so d is a fibering. Further if t = {x, y, z} is a 2-simplex in D, then 

F , , ( u )  = F, , ( r**(u) )  = f , , , ( u ) ,  so F, , (u )  is adjacent to F,~(u) in AF and 

hence d~l (xyzx )  is a triangle in AF. So d[~(t) is a 2-simplex of DE and (1) 

holds. Parts (2) and (3) follow from the definitions. I 

(1.7): The map F ~ dF is a natural equivalence of local systems on D with 

coverings of D. The inverse of this equivalence is d ~ F d. 

Proof." This follows from 1.5. I 

Given a local system on D let limxeA(F(x)) be the disjoint union of the F(x)  

modulo the equivalence relation ,,, generated by the identifications Fx~ : F(x)  

r ( y ) ,  (x, y) an edge of A. Observe: 

(1.8): Let F be a local system. Then 

(1) For u, v e [ I ~ A ( F ( x ) ) ,  u ~ v in l i m ~ ( F ( z ) )  i f  and only i f  there exists 

a path p from z = dR(u) to y = dr(v)  with fp(u)  = v. 

(2) I f  D is simply connected then the map u ~-* fi is a bijection of F (x )  with 

l imze~(F(x)) ,  where fi is the equivalence class of  u under ,,,. 

Proof." Part (1) follows from 1.4. Assume D is simply connected. By 1.6, dF 

is a covering of D with local system F.  As D is simply connected, all cycles are 

trivial with respect to the local system of dF. Thus by (1) the map a : u ~-~ fi 

is an injection of F(x)  into L = l imxea(F(x)) .  As A is connected, (1) also says 

this map is a surjection, so (2) holds. 

(1.9): Let d : L --* D be a connected covering of complexes, A the graph o l D ,  

F = F d, and ,,~ the relation on P = P ( A )  defined by p ,~ q i f  Fp = Fq. Then 

(1) ,,~ is a P-invariant relation. 

(2) Let  a ver tex  of  L x = Then the 

¢ :  ~(D,x)  ~ L 

defined by ¢(~) = Fp(~) is a covering with d o ¢ = end. 
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(3) Forp E P with org(p) = x there exists a unique path q in L with org(q) = a 

and d(q) = p. Fhrther Fp(a) = end(q). 

Proof." See 4.2 in [1] for (I) and (2). Part (3) follows by induction on the length 

ofp. | 

(1.10): Let D be a connected simplicial complex, S the closure of all 2-simplices 

of D, ,,~ = "~s, and x E A. Then 

(1) end: t ( D , x )  ~ D is a universal covering of D. 

(2) For p a cycle at z, 1 #/5 in ~rl(D,z) ffand only ifFp # id, where F is the 

loced system for end. 

Proof." Part (1) follows from 1.9.2 and 1.3. Let p = z o . " x r  and q be cycles 

at x, pi = x o ' "  xi, and qi = qpi. Then by 1.9.3, 40"" qr is the unique lift of p 

under end with origin ~ and Fp(~) = qr = @ = q"/5. Thus Fp = id if and only if 

/5=1.  | 

(1.11): For a connected simplicial complex D, the following are equivalent: 

(1) D possesses no nontrivial connected coverings. 

(2) P(  A ) is generated by the 2-simplices of D. 

(3) Fp = id for each local system F on D and each cycle p of A. 

(4)  I(D) = O. 

Proof: Parts (1) and (2) are equivalent by 1.10.1. Indeed rrl(D, x) is the fiber of 

x E D under the universal covering end of 1.10.1, so (1) and (4) are equivalent. 

Finally (3) and (4) are equivalent by 1.10.2. l 

In particular 1.2 and 1.11 say: 

(1.12) : D is simply connected i f  and only if D possesses no nontrivial connected 

covering. 

2. T h e  p r o o f s  o f  T h e o r e m s  2 and  3 

In this section L, D are simplicial complexes and ¢ : L ~ D is a simplicial map. 

Let A and A be the graphs of L and D, respectively, so that the map ¢ : A ~ A 

of vertices induced by ¢ is a morphism of graphs. 

Recall that a topological space T is n-connected ifT # 0 and for all 0 < k < n, 

each continuous map from S k to T extends to a continuous map from E k+l to 

T. Recall also that the space IKI is n-connected if and only if [-Ik(IKI) = 0 for 
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- 1  _< k _< n and [K[ is simply connected i f n  _> 1. Here Hk(]K[) is the kth 

reduced homology group of [K[. (cf. [6]) Notice a space is -1-connected if and 

only if it is nonempty. 

Recall from the introduction the definitions of n-connectivity of a simplicial 

complex and local n-connectivity of a simplicial map. We say ¢ is local ly  con- 

n e c t e d  if ¢ is locally 0-connected and ¢ is local ly  s imply  c o n n e c t e d  if ¢ is 

locally 1-connected. 

Recall a cover  of a simplieial complex D is a collection ~" of subcomplexes of 

D such that each simplex of D is contained in some member of ~ .  The ne rve  

N ( ~ )  of the cover is the simplicial complex whose simplices are the subsets S of 

~" such that As~s  S ~ 0. 

(2.1): Let D be a simplicial complex; then the following are equivalent: 

(1) D is a clique complex. 

(2) For each simplex s o lD,  s ty(s)  = f3~ss stv(~). 
(3) For ea~  1-simplex {~, y} oe D, sto(~) n sto(~) = s t o ( { ~ ,  ~}). 

Proof." It is easy to see that (1) implies (2) and of course (2) implies (3). Assume 

(3); we prove each clique c = {z l , . . .  xn} of A is a simplex of D by induction 

on n. By definition of A, we may take n > 2, and by induction, {xl } U s 

and {x2 } U s are simplices, where s = {x3,. . .  x,,}. Thus s is a simplex of 

sty(z1 ) n s to(zz)  = sto({xx, xz }) ,  so  c = { z ~ ,  xz  } u s is a s implex .  I 

(2.2): Let v • A, and assume ¢ : L --* D is locally connected. Then ¢ induces a 

surjective group homomorphisms ¢ :  ~q(L, v) ~ ~r,(D, ¢(v)) via ¢(f)  = ¢(p) for 

p a cycle at v. 

Proof." Let x = ¢(v). Write ,-, for the relation " s  on A and A, where S is 

the closure of the set of 2-simplices of the respective complexes in the respective 

graphs. Define ¢ : / 3 ( A )  -* /5(A) by ~(/~) = ¢(p'-'-'). As ¢(ker(~-,)) _< ker(,~), (cf. 

1.3 in [2]) the map is well defined, and of course a morphism of groupoids which 

induces a group homomorphism ¢.  : lrl (L, v) ~ lrl (D, x). 

Claim that for each p • p ( A )  with z = org(p) and end(p) in ¢(A), there exists 

q e P(A) with org(q) = v and ¢(q) ,,~ p. This will prove the surjectivity of 

¢ : ~rl (L, v) ~ ~q(D, x) and hence complete the proof of the lemma. For if p is 

a cycle then as $- l (s tD(z) )  is connected there is a path r in ¢- l ( s to (x ) )  from 

end(q) to v. Then qr is a cycle with ¢(qr) = ¢(q)¢(r) ,~ p$(r). Thus it remains 

to observe ¢(r) ,,, 1 as ~b(r) is a cycle in s to(z)  and s to(z)  is contractible. 
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Let p = x 0 . . .  x,, and  q = yo ' ' ' ym  • P(A)  with ¢(q) = ZO'' 'Xm, YO = V, and 

m < n. Pick p in/~ and  q so tha t  n - m is minimal  subject  to this constraint .  If  

n = m we are done, so assume not.  

Let u = Xm+l if n = m + 1 and u = z,,,+2 otherwise.  By local connect iv-  

i ty there  is y • q~-l(stD(Xm+l) O StD(U)). Fur ther  if n = m + 1 then  we have 

u • ¢(A),  so we m a y  pick ¢(y)  = u. Again by local connect ivi ty  there  exists a 

p a t h  v 0 . . . v k  f rom y,,, to y in ¢-l(s tD(xm+l)) .  Let q' = ( Y 0 " " Y m ) "  ( v o ' " v k )  

and p '  = ¢ ( q ' ) - ( ¢ ( V k ) X m + 2 ' ' ' X n ) .  Then  {¢(vi),¢(vi+l)} • StD(Zm+l) so 

x,,+i¢(vi)¢(vi+,)xm+, "- 1 for each i and  hence p ,-, p ' .  But  l(p') - l(q') = 

n - m - 1, con t ra ry  to the  choice of  p and  q. | 

(2.3):  Assume ¢ : L ~ D is locally connected and/'or F = A , A ,  let Comp(r) 
be the set of connected components of F. Then 

(1) For a/l A • Comp(A) ,  ¢(A) is contained in a unique c(A) E C o m p ( A )  and  

the m a p  c :  Comp(A)  ~ C o m p ( A )  is a bijection with inverse B ~-, ¢ - 1 ( B ) .  

(2) ¢ . :  go(L)  --* Ho(D) is an isomorphism. 

Proof'. Let A • Comp((A) .  Then  ¢(A) is connected so ¢(A) is conta ined in a 

unique B • C o m p ( A ) .  Similarly for x E B, StD(X) C B and 0 # ¢-l(s tD(X))  is 

connected,  so ¢ - l ( s t D ( x ) )  is contained in a unique A(x) E Comp(A) .  

Let z • A and y • stD(x). Then  by local connectivity,  ¢-l(stD(x)nstD(y)) 
0, so A(x)  = A(y). Hence as B is connected,  A(x) = A(b) for all x, b E B,  so 

¢ - ' ( B )  = A. 

Therefore  (1) is es tabl ished and as Ho(L) is free wi th  genera tors  a(A)+ no(L),  

A • Comp(A) ,  where a(A) is some representa t ive  for A, (1) implies (2). (Here 

no(L) is the  subspace  of boundar ies  of C0(L); c.f. section 3.) t 

We can now establ ish Theo rem 2. Let ¢ : L ---* D be locally connected.  By 

2.2, ¢ .  : r l ( L , x )  ~ r l ( D , ¢ ( x ) )  is a surjection. Fur ther  if L is connected then  

D is connected by 2.3. Final ly if L is s imply  connected then by 1.11, ~ ' I(L) = 0, 

so by  2.2, 1rl (D)  = 0, and then D is s imply connected by ano ther  appl ica t ion  of 

1.11. 

(2 .4) :  Assume 0 is a l-approximation of L by D. Forx E h let J:(x) = {a E A : 

x • O(a)} regarded  as a subgraph of A. Then 

(1) Assume that whenever a, b • A and x • O(a) n O(b) tha t  there  exists 

y • O(a) N O(b) such that a and b are in the same connected component 
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of jr(y) and z and y are in the same connected component of O(a) N O(b). 

Then i f  D is simply connected, so is L. 

(2) Assume a : L --* D is a sJmplicial map such that for each x E A, stL(x) C_ 

O(a(x)). Then a induces an injection a .  : 7rl(L,z) ~ 7r,(D,a(z)).  In 

particular if  D is simply connected then so is L. 

(3) I r e :  L ~ D is a simplicial map such that ¢-1(a)  C_ O(a) C_ ¢ - ' ( s to (a ) )  

for each a E A and D is simply connected, then L is simply connected. 

Proof" Consider a covering d : L ~ L of L and let F = F d be the local system 

supplied by Example 2 of section 1. For a E A define E(a) = lim~e0(a) F(x) .  As 

0(a) is simply connected, 1.8.2 says the map E~,~ : u H fi is a bijection of F(z)  

with E(a) for all x E O(a). 

Next if (a, b) is an edge in A then as 0 is a 1- approximation there is x E 
--1 O(a) N 6(b). Define Ea,b = Ea,b,x : E(a) ---, E(b) by Ea,b = Ex,b o Ez,  a. We first 

observe that E~,b is independent of z. As O(a) (1 ~(b) is connected, it suffices to 

show E,,b,~ = Ea,b,y for (x, y) an edge in 0(a) N 0(b). But 

(2.4.4):  I f (a,  b) is an edge in A and x e 6( a ) f30(b) then E~.~ = ry~ o E~.~ and 

E~,b o F ~  = Ey,b. 

So Ea,b,~ = E~,b o E,_~ = E~,a o Fy~ o Zy.~ = Ey,b o Zy.~ = Ea,a,y, establishing 

the claim. 

Now by definition, E~,~ = Eb,~. Further if {a, b, c} is a 2-simplex in D then by 

hypothesis there exists x e 0(a) t3 0(b) N 0(c). Then Eb,~ o E~,b = E~,~ o E~,~ o 

E,,b o Z~,~ = E~,~ o E~,~ = Za,~. 

Thus E is a local system for D. We next claim: 

(2.4.5): If q = ao. . .a , ,  is a path in A and p = Xo. . .x , ,  is a p a t h  in A with 

xi 60(ai )  f3 8(ai+, ) for 0 < i < n and x ,  6 8(a,,), then Eq = E~, , , ,  o Fp o Z[ol, ao . 

The proof is by induction on n. The claim is clear if n = 0. If p = xy and 

q = ab then Eq = Z,b = E~,b o E~,~ = Zy,t o F,y o EZ, ~ by 2.4.4. Finally if n > 1 

t h e n p  = s .xy ,  q = r.ab, and Eq = E.boE~ = Ey,aoF~yoE[,~ o E ~ , . o F . o E i l a o  = 

Ey,b o Fp o E~-~,0, completing the proof of the claim. 

Finally suppose 1 # 15 6 r~ (L, v); then by 1.10.2, we may choose d with Fp # id. 

We will produce a cycle q = co . . .  c,, of A and a cycle p' = z0 . . .  z,, --- p such 

that  zi 6 8(ci)N 8(ci+1) for each i. Then by 2.4.5, Eq = E~o,¢oFp, E[ol,~o . Also as 

p - p', Fp, = Fp # id, so Eq # id and hence D is not simply connected by 1.10.2 
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and 1.11. This will prove (1). Further in (2) we can choose q = oe(p). Hence 

&(p) ¢ 1 in ~I (D,  a ( x ) )  by 1.10.2, completing the proof of (2). Moreover under 

the hypotheses of (3), if x e O(a) N O(b) then ¢(x) E {a, b} ± and x E 0(¢(x)), so 

a¢(x)b is a path in Y'(x), and (1) implies (3). 

So it remains to produce q and p'. Let p = x0 . . .  xm. First as each 1-simplex 

of L is in a member of ~ ,  there exists ai E A with xi-1, xi E 0(ai). Indeed under 

the hypothesis of (2) we can choose ai = a (x i ) ,  p' = p, and q = a o . . . a m .  

So from now on assmne the hypothesis of (1). Then there exists yi E 0(ai) N 

0(ai+l) such that there is a path qi = bi0"" him(i) from ai to ai+l in Y:(yi) and 

a path ri from yi to xi in O(ai) N O(ai+l). 

Let ti, t~, si be constant paths of length l(ri), l(ri), l(qi) with vertex ai, ai+l, yi, 

respectively. Let q~ = ti • qi • ti+l • ai+lai+l and pi = r~ 1 • si • ri • x ix i+l .  Let 

q = qlo." I p, • qm-1 and = p0""pm-1 .  These paths do the job and complete the 

proof. I 

Notice that 2.4.1 is Theorem 3, so Theorem 3 is established. Also we can prove 

analogue of Theorem 1: 

(2.5): A s s u m e  ¢ : L --* D is a locally s imply  connected simplicial map.  Then  

for x E A: 

(1) ¢ induces an isomorphism ¢ . :  r l ( L , x )  -* ~rl(D,¢(x)) of  fundamenta l  

groups. 

(2) L is s imply  connected i f  and only i f  D is s imply  connected. 

(3) ¢ . :  HI(L)  ~ H i ( D )  is an isomorphism i l l  is connected. 

Proof: By 2.2, ¢.  : 7rl(L,x) --~ ~rl(D,¢(x)) is surjective, so to prove (1) it 

remains to show ¢. is injective. 

For a E A define O(a) -- ¢ - l (S tD(a ) ) .  Then as ¢ is locally simply connected, 

8 is a 1-approximation of L by D. Further if x E A then StL(X) C_ 6(¢(x)). 

Hence ¢.  is injective by 2.4.2, completing the proof of (1). Of course (1) implies 

(2) and as H1 (L) is the abelianization of the fundamental group of L when L is 

connected, (1) also implies (3). I 

3. H o m o l o g y  

Let K be a simplicial complex with graph A. Let P = P (A)  be the path groupoid 

of A, S the closure of all 2-simplices of K,  ~ = ~s ,  and ¢ ( K )  = / 5  the edge  

p a t h  g r o u p o i d  for K.  (Compare to Chapter 3, Section 6 of Spanier [6]). 
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Let Co(K) be the free Z-module with basis the 0-simples A. Art o r i en ted  

k-s implex  is an element x0 A . . .  A xk E Ak+I(C0(K)) such that {x0, . . .  , xk} is 

a k-simplex of g .  Let Ok(K) be the submodule of ]\k+a(C0(K)) spanned by the 

oriented k-simplices. 

Recall the boundary operator 

0=~0i 

consists of the linear maps 0i : Ci(K) --+ Ci-a(K) where 00 = 0 and 

Ok(C) = ~--~(--I) ic  i 

i=0 

for each oriented k-simplex c = z0 A . . .  A xk, where for J _C {0, . . .  , k}, c J = 

zi, ^ . . . ^ x i r  with ia < . . .  < ir and { i a , . . . , i r }  = { 0 , . . . , k } -  J.  Also 

Zi(K) = ker(Oi), BI(K) = Im(Oi+l), and Hi(K) = Zi(K)/Bi(K).  

Define ¢ :  P --+ Ca(X) by ¢(p) ,,-a = ~]i=0 zi ^ zi+l for p = z0 . . .  x , .  

Define the abe l i an iz ing  re la t ion  to be the invariaIlt relation ~_ on P gener- 

ated by all paths of the form pqp-lq-a with p and q cycles with the same origin. 

Then ~rl(K,z)/~ - = 7q(K,x)/[~q(K,z),rl(K,x)] is the abelianization of the 

fundamental group 7ra (K, z). 

We record some standard facts about this set up: 

(3.1): Let p,q E P. Then 

(1) ¢ :  P --+ Ca(K) is a groupoid homomorphism. 

(2) ¢(r-apr) = ¢(p) for all paths r,p with org(p) = end(p) = org(r). 

(3) ¢ induces a surjective groupoid homomorphism ¢ : ¢( K ) / "  ~ Ca(K). 

(4) p ~_ q i f  and only i f  p and q have the same end and origin and ¢(p) = ¢(q). 

(5) ZI(K) is generated as a Z-module by the elements ¢(p), p a cycle in A. 

(6) Let t = xyzx E P with {x, y, z} a 2-simplex of K. Then O(xAyAz) = -¢ ( t )  

and BI(K)  is generated by the elements ¢(t), t a 2-simplex of 9 .  

(7) ¢ induces an isomorphism [~q(K),Tq(K)] +/5 ~ ¢(p) + ZI(K) of the 

abelianization of ~rl ( K) with Hi ( K). 

Proof: See for example Exercise H in Chapter 4 of Spanier [6]. | 
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(3.2): H i ( K )  is the abelianization of the fundamental group of K ,  so i f  K is 

simply connected then H1 ( K )  = O. 

Proof." This is just a restatement of 3.1.7. | 

Define the l ink of a simplex s of K to be the subcomplex L i n k g ( s )  of stK(s)  

consisting of all simplices t with t t3 s = 0. 

(3.3): Let x E A and assume y, z E A are in different connected components of 

LinkK(x) .  Then 

(1) I f  p = x o . ' .  x ,  is a cycle in A with Xo = y, xl = z, x2 = z, and xi # x for 

i # 1, then g ~ ( g )  # O. 

(2) I f g , ( g )  = 0 then {x} = y± N z ±. 

Proof: Assume H i ( K )  = 0. Then in (1), ¢(p) = O(~'~ie I ai) for some family (a i :  

i E I)  of oriented 2-simplices by 3.1.5 and 3.1.6. Let Ck(K) = Ck(K) /2Ck(K) ,  

so that Ck(K) is a GF(2)-space. Let ¢ = ¢ o ¢, where ¢ :  C -* C is reduction 

modulo 2. Then 

(3.3.3): ,p(p) = ~{~I  ~b(ti) 

where ti is the triangle in A with aai = ¢(ti);  cf. 3.1.6. 

Let L be the connected component of Link(x)  containing !1 and J consist of 

those j E I such that ti contains an edge xu with u E L. Then 

(3.3.4): = +  (xuj) + 

where t i = xu iv ix .  Now as xi ~ x for i ~ 1 and z ~ L, 3.3.3 and 3.3.4 imply 

(3.3.5): Ej j¢( ui) + = 

This is impossible as the sum on the left in 3.3.5 has an even number of terms, 

whereas 3.3.5 says y is the unique member of L such that (b(xy) appears an odd 

number of times as a term. 

So (1) is established. Now if u E y± N z ± - {x} then p = yxzuy  is a cycle 

satisfying the hypothesis of (1), so (1) implies (2). 

Finally we record the following standard fact: 

(3.4): Let L be a n-dimensional subcomplex of K such that 

(1) H (L) # O, 
(2) Each n-simplex of L is a maximal simplex of K.  
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Then H , (K)  # O. 

Proof: If 0 ~ z • Zn(L), then z • Zn(K) and hypothesis (2) implies that 

z ¢ Bn(K), hence z + Bn(g)  is a nontrivial element of Hn(K). 1 

4. Carriers 

In this section D is a simplicial complex with graph A. 

Following Walker in [7] and Bjhrner in [3], define an n - c o n n e c t e d  c a r r i e r  

from D to a topological space T to be a function C : D ~ 2 T from the simplices 

of D into the power set of T such that 

(C1) If s C_ t are simplices of D then C(s) C C(t). 

(C2) C(s) is rain(n, dim(s))-connected for all simplices s of D. 

We say C is a c o n t r a c t i b l e  c a r r i e r  if C is n-connected for all n. If f : IDI --} T 

is continuous then we say C carries f i f  f(]s]) C_ C(s) for all simplices s of D. For 

g : IDI ---} T continuous we write f ~_ g to indicate that f and g are homotopic. 

(4.1): Let C be an n-connected carrier from D to a topological space T. Then 

(1) I f  f ,  g : IDn[ ~ T are carried by C then f ~_ g. 

(2) Each function f : A ~ T with f (x)  E C(x) for all x • A extends to a 

continuous map f : [Dn+l[ --* T carried by C. 

Proof" This is Lemma 10.1 in [3], which refers the reader elsewhere for a proof. 

A proof of a somewhat weaker result appears in Lemma 2.1 of [7], but this proof 

works in our situation too. For completeness we repeat it here. 

The proof is by induction on n. When n = - 1  part (1) is vacuously satisfied 

as D -1 -- 0, while in (2) as D o consists of the vertices of A but  no edges, the 

lemma is trivial. Thus the induction is anchored and we may take n >_ 0. Further 

proceeding by induction on n, in (2) we may assume f is defined on [Dn[ so as to 

be carried by the restriction of C to D n. In (1) define H :IDa[ x {0,1} ~ T by 

H(a, O) = f(a) and H(a, 1) = g(a). We may assume g is extended continuously 

to H : [D"-X[ × I ---} T, where I is the unit interval. 

Next in (2), if we can extend f continuously to Is[ for all ( n +  1)-simplices s then 

we have our continuous extension to ID n+l [. Similarly in (1) it suffices to extend 

H to Is[ x I for all n-simplices s. Let B(s) be the union of the faces It[, as t ranges 

over all dim(s) -  1 subsimplices of s. Then in (2), we have a homeomorphism Is[ -~ 

E "+1 mapping B(s) to S", so as C(s) is n-connected, there exists a continuous 

extension of f to Is[, completing the proof of (2). Finally in (1), there is a 
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homeomorphism of Is I x I with E n+l mapping (B(s) x I) U (Is] x {0, 1}) to S n, 

so we can extend H continuously, and (1) is established. | 

(4.2): Let ~ : L --* D be a simplicial map and assume E is a map from simplices 

of D to n-connected subcomplexes of L, • is a map from k-simplices of D to 

min(n,k)-connected subcomplexes o lD,  (for a/l k)such that E(Sl) C_ E(s2) and 

O(sl) C O(s2) whenever S 1 C S2, and that 

(a) t C_ E(~(t)) for each simplex t of L, and 

(b) ¢(E(s)) O s C_ ¢(s)  for each simplex s of D. 

Then 

(1) ¢ : L n --* D n is a homotopy equivedence. 

(2) I f n  # 1 then L is n-connected i f  and only i f  D is n-connected. 

(3) If  n = 1 and ~(s) is 2-connected for each 2-simplex s of D then ~. : 

7rl(L, x) ~ 7rl(D, $(z)) is a surjection, so i l l  is simply connected, so is D. 

(4) If  n = 1 and Z :  a H E(a) is a 1-approximation of L by D with stL(z) C_ 

--($(z)) for all vertices x of L then ~ . :  7rl(L, x) ~ ~rl(D, $(z)) is injective, 

so ff D is simply connected, so is L. 

(5) If  n = 1 and Z :  a ~-~ Z(a) is a 1-approximation of L by D with "~(a) C_ 

$- l (s tD(a))  for each a E A and D is simply connected then so is L. 

(6) If  E(s), O(s) are contractible for each simplex s of D then ~ : L ~ D is a 

homotopy equivalence. 

Proof: Proofs of some parts of the lemma are sketched in [3] as suggested by 

[7]; for completeness we fill in a few details of the proof. Without loss dim(D) < 

n + l  > dim(L). For s a simplex of D define C(s) = IZ(s)l and F(s) = IO(s)l and 

for t a simplex of L let E(t)  = C(¢(t)). Then by hypothesis, C, E, and F are 

n-connected carriers. Let f = I¢1: ILl ~ IDI. By 4.1.2, there exists g:  [D I ~ ILl 

carried by C. 

Now (g o f)(Itl) ___ C(¢(t)) = E(t),  so E carries g o f .  Also by (a), It I C_ E(t),  

so E carries idlLi, and hence by 4.1.1, g o f ~_ idlL, I. 

Similarly ( f  og)(ls[) _ f (C(s ) )  = f(lZ(s)l) = I~(Z(s))l c_ F(s)  and I s l c  F(s)  

by two applications of (b). So f o g ~_ idlDn I by 4.1.1. Therefore ~b : L n ~ D n is 

a homotopy equivalence, and of course under the hypotheses of (6), ¢ : L ~ D 

is a homotopy equivalence. So (1) and (6) are established. 

Suppose n = 1. Under the hypotheses of (3), F is an n + 1-connected carrier, 

so f o g  "2_ idlL I by 4.1.1 and hence f ,  og,  = id, where f , :  ~I(ILI) ~ ~a(IDI) and 
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g , :  rl(IDI) ~ 7rl(ILI). 

Therefore (3) holds. Similarly 2.4.2 and 2.4.3 imply (4) and (5), respectively. 

Thus it remains to show that H,(L) = 0 if and only if Hn(D) = 0. To do so 

we adopt the notation in Chapter 4 of [6] and observe that it suffices to show the 

induced maps A ( / ) :  Z . ( [L"  D ~ Z.([D" D and A(g):  Zn([Dn[) -* Z.([Ln[) of 

page 161 of [6] are inverses of each other. For then if H,,(L) = 0 then Zn(IL[) = 

B,~(ILI) , so Z,(ID[) = A(f)(Z,(ILD) = A(f)(B,,([LI) ) C_ Bn(IDI) , and hence 

H . ( D )  = O. Similarly if H (D) = 0 then Hn(L) = O. 

Now as g o f ,,, idlL,,[, A(g o f)n - idc,,([L D = 0n+l 0 (7 n -~- O'n_ 1 0 0  n for some 

chain homotopy a of degree 1 on the chain group C([Ln[). (el. 4.4.4 in [6]) But 

dim(L n) = n, so 0,,+1 o an = 0, while an-1 o On = 0 on Zn(ILI), so A(g o f )  is 

the identity on Z,(IL[), completing the proof. | 

Recall the o r d e r  complex  O(X) of a poset X is the simplicial complex on X 

whose simplices are the finite chains in X. We often abuse notation and write X 

for O(X). Notice that if ¢ : X ---} Y is an order preserving map then ¢ defines a 

simplicial map ¢ :  O(X) ---* O(Y). For x E X, write X(>_ x) for {y • X :  y >_ x). 

(4.3): ( Quillen) Let L, D be the order complexes of posets P, Q, respectively and 

¢ : P --* Q an order preserving map. Then 

(1) /I'¢-I(Q(_> q)) is n-connected for all q • Q then ¢ : L" --* D n is a homotopy 

equivalence and L is n-connected if and only if D is n-connected. 

(2) /.f ¢-1(Q(> q)) is contractible for all q • Q then ¢ : L --* D is a homotopy 

equivalence. 

Proof: Quillen gives a proof in Prop. 1.6 and 7.6 of [5]. The proof of (2) 

given here comes from [7]; the proof of (1) is suggested in [3], although simple 

connectivity does not appear to be addressed when n = 1. In any event we supply 

the proof for completeness. 

We first produce maps -- and • as in 4.2. For s a simplex of D define --(s) = 

¢-I(Q(>_ rain(s))) and ~(s) = Q(>_ rain(s)), where rain(s) is the minimum 

element of the chain 8. Then by hypothesis, E(s) is n-connected, while ~(s) is 

conically contractible. Visibly hypotheses (a) and (b) of 4.2 are satisfied, so 4.2 

completes the proof. Notice E : a ~-* E(a) is a 1-approximation of L by D with 

.~.(a) C_ ¢-l(stD(a)) for each a E Q, so 4.2.5 applies when n = 1. | 

Define a cover .T of D to be contractible if all finite intersections are contractible 

or empty. 
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(4.4): 

(1) I f .T  is a contractible cover olD then D and the nerve N(Y:) have the same 

homotopy type. 

(2) Let I = {1,--.  ,m} and ~" = {F(i) : i • I} a cover o lD such that/'or a/l 

1 < k < n + 2 and a11 k-subsets g of I, r ( J )  = ~ jeJ  F(j)  is (n - k + 1)- 

connected. Then D is n-connected. 

Proof'. This is well known and essentially Theorem 2.1 in Folkman [4]. The 

proof we give for (1) appears in 10.6 of [3], while the proof of (2) is essentially 

Folkman's proof. Let N = N(Y'). Write sd(K) for the barycentric subdivision of 

a simplicial complex K; ie. the order complex of the poset of simplices of K.  First 

the proof of (1). Define f :  P = sd(D) ---} sd(N) = Q by f(s) = {F E JZ : s C_ F}. 

Then s C NFeI(s) F, so f(s) is a simplex of N. Also if t C_ s then f(s) C_ f(t),  

so f is an order preserving map from P* to Q, where P* is the dual poset to P.  

(Notice O(P) = O(P').) 

Claim f - l ( Q ( >  q)) is contractible for all q E Q; if so 4.3.2 will complete the 

proof of (1). Define f~feq F = Fq. As q is a simplex of N, Fq # 0, so Fq is 

contractible by hypothesis. Further f - I  (Q(_> q)) consists of all simplices s with 

f(s) > q; that is with q C_ f(s) or better with s C_ Fq. So f - l (Q(_> q)) = Fq is 

contractible, completing the proof of (1). 

The proof of (2) is by induction on m. Let I '  = I - {m}, Y" = {F(i)  : i • I '},  

and D' = U f e 7  IF. Then by induction on m, D t is n-connected, while by 

hypothesis, F ( m ) i s  n-connected. Let E(i) = r ( { i ,m} )  for i • I ' ,  and C = 

{E(i) : i • I '}.  Then E is a cover of F(m) N D' satisfying our hypotheses for 

m - 1, n - 1, so by induction on m, F(m) f3 D' is (n - 1)-connected. 

Finally we have the following exact subsequence of the Mayer-Vietoris se- 

quence: 

[-Ik(D') ~ [-Ik(F(m)) --* [-Ik(D) --* [-'Ik-l(F(m) f3 D') 

So as Hk(D')  = [-Ik(F(m)) = [-Ik(f(m) f3 D')  = 0 for k < n and H , ( D ' )  = 

[-I,(F(m)) = 0, we conclude Hk(D) = 0 for k < n. 

Thus it remains to observe that D is simply connected when n > 1. But this 

follows from Theorem 3 as I is contractible when regarded as the complex of all 

nonempty subsets of I and i ~ F(i) is a 1-approximation of D by I .  II 
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5 .  T h e  p r o o f  o f  T h e o r e m  1 

In this section D is a slmplicial complex with graph A. 

(5.1): Assume s is a simplex o[ the clique complex D such that 5 r = {stD(x) : 

x E s} is a cover o lD.  Then D is contractible. 

Proof: Suppose first s = {x} is 0-dimensional. Then for each simplex t, t U {x} 

is a simplex. Thus the m a p d : D  ~ D defined byd(y )  = x for a l l y  E A i s  

contiguous to the identity, so D is contractible. 

Now the general case. As D is a clique complex, 2.1 says that for t _C s, 

stD(t) = NzEt stD(x). Also stD(t) is contractible by the previous paragraph as 

stD(t) = sGtv(O(x) for z E t. So 4.4.2 completes the proof. | 

(5.2): Let 6 be an n-approximation o f a  simplicial complex L by D. Then 

(1) "=(s) -- UaEs 8(a) is n-connected, while i[ D is a clique complex then ~(s) = 

Uaes sto(a) is contractible for each simplex s of D. 

(2) I r e :  L -+ D is a simplicial map with ¢-1(a) C_ 8(a) for each a E A, then 

t _C E(¢(t)) for each simplex t of L and i fn  ~ 1 and D is n-connected, then 

L is n-connected. 

(3) I r e  : L ~ D is a simplicial map with ¢-1(a) C_ 8(a) C_ ¢- l (s tD(a))  for 

each a E A then ¢(='(s)) U ,  _C #(s) for each simplex s of D, and i f  in 

addition D is a clique complex then D is n-connected if and only i f  L is 

n-connected. 

Proof." Part (1) follows from 4.4.2 and 5.1. So assume ¢ : L --+ D is a simplicial 

map with ¢-1(a) C 8(a) for each a E A. Then visibly t C E(¢(t)) for each 

simplex t of L. Further if D is n-connected, let 4~*(s) = D for each simplex s of 

D. Then ~* serves in the role of the map ~ of 4.2, so that 4.2.2 and (1) imply 

(2). 

Finally assume also 8(a) C_ ¢- ' (s tD(a))  for each a E A. Then visibly ¢(--(s))U 

s C_ ~(s). Hence 4.2 and (1) complete the proof of (3). 

We close this section with the proof of Theorem 1. So assume ¢ : L --+ D is 

a locally n-connected simplicial map and D is a clique complex. For a E A, let 

8(a) = ¢-l(s tD(a)) .  Then as ¢ is locally n-connected, 8 is an n-approximation 

of L by D. Moreover the hypotheses of 5.2.3 are satisfied, so by 5.2.3, L is n- 

connected if and only if D is n-connected. Further by 5.2.2 and 5.2.3, the maps 

and • of 5.2.1 satisfy the hypotheses of 4.2. So by 4.2.1, ¢ : L " ~ D n is a 

homotopy equivalence. In particular if n > 1 then ¢ , :  7rl(L,x) ~ ~rl(D,¢(x))is 
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an isomorphism. Similarly if ~ is locally contractible then by 4.2.6, ~ : L ~ D is 

a homotopy equivalence. 

Finally assume n = 1. Then by 4.2.3 and 4.2.4, ~ , :  7cl(L,x) ---, ~rl(D, ~(z)) is 

an isomorphism. Therefore the proof of Theorem 1 is complete. 
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